Skip to main content

Home

The Leeds Logic group

Mathematical logic, a young subject, has developed over the last 30 years into an amalgam of fast-moving disciplines, each with its own sophisticated techniques. These are linked by profound common concerns, around definability, decidability, effectiveness and computability, the nature of the continuum, and foundations. Some branches are highly multidisciplinary and force the researcher to be fully conversant with other fields (e.g. algebra, computer science).

The Logic Group at the University of Leeds is one of the largest and most active worldwide, with a long uninterrupted tradition dating back to 1951, when its founder Martin Löb moved to Leeds. It has an international reputation for research in most of the main areas of mathematical logic - computability theory, model theory, set theory, proof theory, and in applications to algebra, analysis, number theory and theoretical computer science.

More details about the current grants, PhD students, and research interests are on our Research page.

Upcoming events

MAC 30 - Model theory, Algebra & Combinatorics

Location: MALL

To celebrate Dugald's 30 years in Leeds we are holding a mini-conference with a focus on the various research themes that have occupied Dugald's succesful achievements over the last 30 years in the University of Leeds.

-

Zach McKenzie (University of Chester)

Location: MALL
Title: Well-founded models of fragments of Collection

Let $\mathsf{M}$ be the weak set theory (with powersets) axiomatised by: $\textsf{Extensionality}$, $\textsf{Pair}$, $\textsf{Union}$, $\textsf{Infinity}$, $\textsf{Powerset}$, transitive containment ($\textsf{TCo}$), $\Delta_0\textsf{-Separation}$ and $\textsf{Set-Foundation}$. In this talk I will discuss the relationship between two alternative versions of the set-theoretic collection scheme: $\textsf{Collection}$ and $\textsf{Strong Collection}$. Both of these schemes yield $\mathsf{ZF}$ when added to $\mathsf{M}$, but when restricted the $\Pi_n$-formulae (denoted $\Pi_n\textsf{-Collection}$ and $\textsf{Strong } \Pi_n\textsf{-Collection}$) these alternative versions of set-theoretic collection differ. In particular, over the theory $\mathsf{M}$, $\textsf{Strong }\Pi_n\textsf{-Collecton}$ is equivalent to $\Pi_n\textsf{-Collection}+\Sigma_{n+1}\textsf{-Separation}$. And, $\mathsf{M}+\textsf{Strong }\Pi_n\textsf{-Collection}$ proves the consistency of $\mathsf{M}+\Pi_n\textsf{-Collection}$. In this talk I will show that, despite this difference in consistency strength, every countable well-founded model of $\mathsf{M}+\Pi_n\textsf{-Collection}$ satisfies $\textsf{Strong } \Pi_n\textsf{-Collection}$. If time permits I will outline how this argument can be refined to show that $\mathsf{M}+\Pi_n\textsf{-Collection}+\Pi_{n+1}\textsf{-Foundation}$ proves $\Sigma_{n+1}\textsf{-Separation}$.

Artem Chernikov (University of Maryland)

Location: MALL
Title: Convolution semigroup on Keisler measures and revised Newelski's conjecture

We study the structure of the convolution semigroups of measures over definable groups. We isolate the property of generic transitivity and demonstrate that it is sufficient (and necessary) to develop stable group theory localizing on a generically stable type. We establish generic transitivity of generically stable idempotent types in important new cases, including abelian groups in arbitrary theories and arbitrary groups in rosy theories, and characterize them as generics of connected type-definable subgroups. Using tools from Keisler's randomization theory, we generalize some of these results from types to generically stable Keisler measures, and classify idempotent generically stable measures in abelian groups as (unique) translation-invariant measures on type-definable fsg subgroups. This provides a partial definable counterpart to the classical work of Rudin, Cohen and Pym for locally compact topological groups. Working over a countable NIP structure, we provide an explicit construction of a minimal left ideal in the convolution semigroup of measures from a minimal left ideal of types and the unique Haar measure on the ideal group. As a key ingredient, we prove the revised Ellis group conjecture of Newelski saying that under NIP, the so-called tau-topology on the ideal group is Hausdorff.

Joint work with Kyle Gannon and Krzysztof Krupiński.

View all Events