Generalised Measurablity and Bilinear forms

Charlotte Kestner joint work with Sylvy Anscombe

Finite fields

Fact: (Chatzidakis, v.d.Dries, Macintyre)

Let $\phi(x,y) \in \mathcal{L}_{rings}$, then there is a positive constant C and and a finite set $D \subset \{0,1,...,|x|\} \times \mathbb{Q}^{>0}$ of pairs (d,μ) such that for each finite field \mathbb{F}_q and each $a \in \mathbb{F}_q^{|y|}$?, if the set $\phi(\mathbb{F}_q,a)$ is non-empty then:

$$||\phi(\mathbb{F}_q,a)|-\mu q^d|\leq Cq^{d-\frac{1}{2}}$$

Corollary

The field \mathbb{F}_p cannot be uniformly defined in \mathbb{F}_{p^2}

Definition: (Macpherson, Steinhorn, 2008) An \mathcal{L} -structure, \mathcal{M} is said to be MS-measurable if there is a function

 $h = (dim, meas) : Def(\mathcal{M}) \to \mathbb{N} \times \mathbb{R}^{>0} \cup (0,0)$ such that:

Finite For any \mathcal{L} -formula $\phi(x,\bar{y})$ the set $\{h(\phi(x,\bar{a})): \bar{a} \in M^n\}$ is finite.

Definable The set of $\bar{a} \in M^n$ such that $h(\phi(x, \bar{a}))$ has a particular value is \emptyset -definable.

Singletons For $\bar{a} \in M^n$, $h(\bar{a}) = (0,1)$ Additive Suppose $X, Y \in Def(\mathcal{M})$ disjoint with $dim(X) \geq$

dim(Y) then $dim(X \cup Y) = dim(X)$ and

$$meas(X \cup Y) = \left\{ egin{array}{ll} meas(X) & +meas(Y) \\ & ext{if } dim(X) = dim(Y) \\ meas(X) & ext{if } dim(X) > dim(Y) \end{array}
ight.$$

Fubini Let $f: X \to Y$ onto with $h(f^{-1}(y)) = (d, \mu)$ for all $y \in Y$ then $h(X) = (d + dim(Y), \mu meas(Y))$

Examples

- (Chatzidakis, van den Dries, Macintyre) Pseudo finite fields.
- Vector spaces.
- Random graph.

Non-Examples

- ACF.
- $\mathbb{Z}(p^{\infty})$.
- SOP: Some $\phi(x,y)$ and $(a_i)_{i\in\omega}$ such that

$$\models \exists x (\phi(x, a_i) \land \neg \phi(x, a_i)) \text{ iff } i < j$$

Fact (Macpherson, Steinhorn)

MS-measureable structures are Supersimple finite SU-rank.

Fact (K., Pillay)

Strongly minimal MS-measureable structures are Unimodular

Fact (K., Pillay)

MS-measureable stable structures are One-based

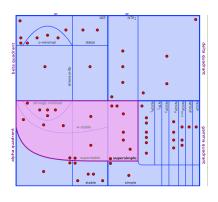


Figure 1: The Universe (see forkinganddividing.com)

Questions

Fields

- Only known MS-measurable fields are pseudofinite.
- (Scanlon) MS-measurable fields are quazifinite and perfect, i.e. need PAC!

ω -categorical structures

- (Marimon) Tetrahedron free 3-hypergraph is ω -categorical structures, supersimple rank 1 and one-based, but **not** MS-measurable.
- (Evans, Marimon) Lots of Hrushovski constructions are not MS-measurable.

Measuring semiring (Anscombe, Macpherson, Steinhorn, Wolf)

 $T = (T, +, \cdot, 0, 1, <)$ is a measuring semiring if:

- (T, +, 0) and $(T, \cdot, 1)$ are monoids, with + distributing over \cdot .
- $\forall x \in T \ x \cdot 0 = 0$
- (T, <, 0) is totally ordered with least element 0.
- $\forall x, y, z \in T$ if $x \le y$ then $x + z \le y + z$ and $x \cdot z \le y \cdot z$.
- For $x, y \in T$ we say the **dimension** of x equals the dimension of y if $x \le y \le n \cdot x$ or $y \le x \le n \cdot y$ for some $n \in \mathbb{N}$, we write d(x) = d(y).

 $\forall x, y, z \in T \text{ if } x < y \text{ and } d(x) = d(z) \text{ then } x + z < y + z.$

Generalised Measurable (Anscombe, Macpherson, Steinhorn, Wolf)

Given a T measuring semi-ring. An \mathcal{L} -structure, \mathcal{M} is said to be T-measurable if there is a function $h =: Def(\mathcal{M}) \to T$ such that:

mac condition	For	any	\mathcal{L} -formula	$\phi(x,\bar{y})$	the	set
	$\{\mathit{h}(\phi$	$(x, \bar{a}))$: $\bar{a} \in M^n$ } is	finite.		
Definable	The	set of	$ar{a} \in M^n$ such	that $h(\phi(x))$	(x, \bar{a})	has a
	particular value is \emptyset -definable.					
Finite sets	h(X)	= X	for finite X .			
Additive	h is finitely additive.					
Fubini	Let f	$f:X\to$	$\rightarrow Y$ onto with	$h(f^{-1}(y))$)=t	for all

 $y \in Y$ then $h(X) = t \cdot h(Y)$

Imperial College London Examples

- Any MS-measurable structure. T is monomials from $\mathbb{R}[t]$.
- Inf dim vector space over pseudofinite field. $T = \mathbb{R}[t_1, t_2]$.

Non-examples

- algebraically closed fields
- SOP

Pseudofinite bilinear forms (V, F, β)

Take two sorts (V_i, F_i) with $(F_i, +, \cdot, 0, 1)$ a finite field, and $(V_i, +, 0)$ an i-dim vector space over F_i . In two sorted language we also have

- Scalar multiplication: $\lambda : F_i \times V_i \rightarrow V_i$.
- Bilinear form: $\beta: V_i \times V_i \to F_i$.

If $|F_i|$ is unbounded we call a non-principal ultraproduct

$$(\mathcal{V},\mathcal{F},\beta)=\prod_i(V_i,F_i)/\mathcal{U}$$

an infinite dimensional vector space over a pseudofinite field with a pseudo-finite bilinear form and call the common theory T_{bf}^{psf} .

Notation

Fix a monster model $\bar{M} = (\bar{V}, \bar{F})$,

- If X is a set of vectors we use $\langle X \rangle$ to denote the \bar{F} -span of X.
- ullet Given A, a subset of $ar{M}$ we use $A_{K}=A\cap ar{\mathcal{F}}$ and $A_{V}=A\cap ar{V}$
- Given A, a subset of \bar{M} , $K_A = (dcl(A))_K$

Facts

- Quantifier elimination when add co-ordinate function and "linear independence" (Granger/Harrison-Shermoen).
- Not simple.
- NSOP₁ as Kim-forking is symmetric (Kaplan-Ramsey).
- Generalised measurable in $\mathbb{R}(t_1, t_2)$ (Anscombe-Macpherson-Steinhorn-Wolf).
- Has fine pseudofinite dimension, denoted δ (by above and Garcia-Macpherson-Steinhorn).

Independence relations

Kim-independence

In this structure $A \bigcup_{M}^{K} B$ iff

- $acl(A)_K \downarrow_{M_K}^F acl(B)_K$.
- $acl(A)_V \cap acl(B)_V \subseteq M_V$

Pseudo-finite independence

$$A \downarrow_C^{\delta} B$$
 if $\delta(A/C) = \delta(A/BC)$.

These are not the same.

Granger-independence

(Granger) Let $\bar{M} = (\bar{V}, \bar{F}; \beta)$ be a sufficiently saturated model of T. Let $A \subseteq B \subset \bar{M}$ and let $c \in \bar{M}$ (a singleton). We say that $\operatorname{tp}(c/B)$ does not Γ -fork $(dn\Gamma f)$ over A if $K_{Ac} \downarrow_{K_A}^F K_B$ and one of the following three conditions holds:

- $\mathbf{0}$ $c \in \bar{F}$
- $c \in \langle A_V \rangle$
- ③ $c \notin \langle B \rangle$ and $\beta(c, B)$ is Φ-independent over $\beta(c, A)$, i.e. if $b_1, ..., b_n \in B_V \setminus \langle A \rangle$ are F-linearly independent then $\{\beta(c, b_1), ..., \beta(c, b_n)\}$ is independent, with respect to $\bigcup_{i=1}^{F} f_i$, over $K_B K_{Ac}$.

If tp(c/B) does not Γ -fork over A then we write $c \downarrow_A^I B$, and extend this notion to tuples:

$$c_1...c_n \downarrow_A^{\Gamma} B$$
 iff $c_1...c_{n-1} \downarrow_A^{\Gamma} B$ and $c_n \downarrow_{A_{C_1} C_2}^{\Gamma} B$

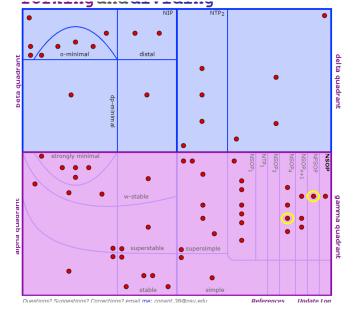
Theorem (needs checking)

 \bigcup^{Γ} in T_{bf}^{psf} has:

- Strong finite character.
- Existence over models
- Monotonicity
- Symmetry
- Independent Amalgamation over model
 - Extension
 - Base monotonicity
 - Transitivity

Theorem (needs checking)

$$\int_{0}^{1} \int_{0}^{1} \int_{0$$



What else?

Imperial College London Questions

Fields

Do generalised measurable fields coincide with measurable fields?

NSOP hierarchy

How far can we go?