Foundationless geology and a Foundation conservativity result

February 2023

Elliot Glazer - Harvard University

(ロ)、(型)、(E)、(E)、 E) の(()

The Axiom of Foundation clarifies the domain of set theory, reducing its study to the well-founded universe V.

It doesn't make sense to ask whether it is "true" since in its absense, it's not clear what set theoretic questions are asking about. E.g., it is a matter of semantics whether sets ought to be allowed to contain themselves as elements.

Conversely, all questions formulated over ZF are about mathematical structure, and may have some claim to a Platonic truth.

Foundation is "mathematically irrelevant"

Since Foundation restricts the domain of set theoretic discourse, we ought to wonder if it inhibits set theory in its role as a foundation of mathematics. Have we lost mathematical structures in this restricton?

With Choice, there is no such concern. From the well-ordering theorem, we know in ZFC – Fund that every mathematical structure is isomorphic to one with an ordinal as its universe.

Things are more complicated if you're a Choice skeptic.

Over ZF - Fund, Fund does have mathematical consequences, e.g. "if every orderable set is well-orderable, then every set is well-orderable."

But there may be a choiceless sense in which Fund does not restrict what structures can exist in the universe.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

To clarify the role of Fund in choiceless mathematics, we will need to examine Π_2 sentences and their interactions with mathematical structure.

Consider the following classes of Π_2 sentences:

- A rank Π_2 sentence is of the form "for all α , $V_{\alpha} \models \varphi$."
- A structural Π_2 sentence is of the form "for every structure \mathcal{M} and θ a second-order sentence, $\mathcal{M} \models \theta$."
- The negation of a rank (structural) Π₂ sentence is called a rank (structural) Σ₂ sentence.

AC is a structural Π_2 sentence since it is equivalent to every \mathcal{M} satisfying "there exists a total order < on M such that every nonempty subset of M has a minimum."

Pure AC (that AC holds in the well-founded kernel V) is rank Π_2 .

Rank Π_2 sentences are structural Π_2 sentences: "for all α , $V_{\alpha} \models \varphi$ " can be phrased as "any structure satisfying basic set theory, Σ_2 -replacement, and second-order comprehension satisfies $\forall \alpha (V_{\alpha} \models \varphi)$."

ZF proves these are the same class: a structural Π_2 sentence is true iff every V_{α} believes it.

ZFC proves all Π_2 sentences are of this form: a Π_2 sentence φ is true iff every V_{α} satisfies " Σ_2 -replacement $\rightarrow \varphi$."

Basic Π_2 conservativity results for Foundation

ZF is conservative over ZF – Fund with respect to rank Π_2 sentences and rank Σ_2 sentences since they live in the well-founded kernel V.

ZF is conservative over ZF - Fund with respect to structural $\boldsymbol{\Sigma}_2$ sentences.

ZF is conservative over ZF – Fund with respect to structural Π_2 sentences.

In a sense, this is best possible: "if every orderable set is well-orderable, then every set is well-orderable" is a disjunction of a structural Σ_2 sentence and a structural Π_2 sentence.

In fact, ZF + KWP₁^{*}, the assertion that every nonempty set is the surjective image of some $\mathcal{P}(\kappa)$, is also conservative with respect to structural Π_2 sentences. In particular, KWP₁^{*} is Π_2 but not structural Π_2 .

A remark about Jech-Sochor

This theorem can be seen as a generalization of the Jech-Sochor theorem, which says a fixed rank-initial segment of a permutation model of ZFA can be embedded into a symmetric extension of its pure part.

This shows that second-order structures which exist in a permutation model can also exist in a universe of ZF, providing easy consistency proofs for theories like ZF + "there is an amorphous set".

But not all ZFA models are permutation models.

Working in ZF – Fund, suppose there is a structure $\mathcal{M} \models \theta$, some second-order sentence. We want to find a (proper class) universe of ZF with an isomorphic copy of M.

We can treat the universe of M as a set of atoms. By considering $\mathcal{M}' = (\mathcal{P}^{\omega}(M), \in)$, we may assume the language of \mathcal{M} is a single binary predicate E and $|M| = |M|^{<\omega}$.

Let $X = (M, \mathcal{P}(M), E)$ and descend to $L(X) \models ZFA +$ "there is a model of θ ."

Ultimately, the construction produces a forcing extension of L(X) in which the pure part contains an isomorphic copy of \mathcal{M} with the same power set.

But first we need to understand the geology of $V = V^{L(X)}$. (V^N denotes the pure part of a ZFA model N).

Key geology fact

The remainder of this talk will focus on verifying that V is constructible from a set. By work of Usuba, this implies there is a set of ordinals z such that V is a symmetric extension of L[z].

Recall the choice principle SVC(S), which asserts that every nonempty set is for some α the surjective image of $S \times \alpha$. This implies collapsing S to ω forces AC.

For each $x \in L(X)$, let α_x be least such that $x \in L_{\alpha_x+1}(X)$, (φ_x, β_x) least such that there is $p \in X^{<\omega}$ such that $x = \{s \in L_{\alpha_x} : \varphi_x(s, \beta_x, p)\}$, and $P_x = \{p \in X^{<\omega} : x = \{s \in L_{\alpha_x} : \varphi_x(s, \beta_x, p)\}.$

Let $S = \{x \in V : \forall y \in V \cap L_{\alpha_x}(X)(P_y \neq P_x)\}.$

Verifying SVC

Fix some κ . We have a surjection $S \times \omega \times \kappa^2$ to $V \cap L_{\kappa}(X)$ by $(x, n, \alpha, \beta) \mapsto \{s \in L_{\alpha}(X) : \exists p \in P_x(\varphi_n(s, \beta, p))\}.$

Thus, we have SVC(S).

Forcing

Let $\mathbb{P} = \text{Coll}(\omega, X \times S)$ and $G \subset \mathbb{P}$ be generic. There is $r \subset \omega$ such that $V^{L(X)[G]} = L[r]$.

In L(X)[G], there is generic $g \subset \text{Coll}(\omega, S)$. Notice $V[g] \models AC$, and since g is pure, we have $V[g] \subset L[r]$. We will show V[g] is a ground of L[r].

Bukovsky's theorem

Let $\delta = \aleph^*(\mathbb{P})$, i.e. the least ordinal not the surjective image of \mathbb{P} .

We will show V[g] uniformly δ -approximates L[r], i.e. that for any κ and $f : \kappa \to \kappa, f \in L[r]$, there is $F : \kappa \to \mathcal{P}_{\delta}(\kappa)$ in V[g] such that for all $\alpha < \kappa, f(\alpha) \in F(\alpha)$.

Fix such an $f : \kappa \to \kappa$. Since $f \in L(X)[G]$, it has a name $\dot{f} \in L(X)$. In L(X), define $F(\alpha) = \{\xi < \kappa : \exists p \in \mathbb{P}(p \Vdash \dot{f}(\alpha) = \xi)\}.$

Since *F* is pure, we have $F \in V \subset V[g]$.

By Bukovsky's theorem, L[r] is a generic extension of V[g], and hence of V as well. Let $\mathbb{Q} \in V$ be such that $L[r] = V^{\mathbb{Q}}$.

Usuba's trick

Consider generic $G \times H \subset \mathbb{Q} \times \mathbb{Q}$. We have $V[G][H] = L[r_1][r_2]$. Each $L[r_i]$ is a ground of $L[r_1][r_2]$, so $L[r_1][r_2]$ has a ground $L[z] \subset L[r_1] \cap L[r_2] \subset V \subset L[r_1]$.

Since $V \models$ SVC, we conclude V is a symmetric extension of L[z].

Some questions

- ► Working in ZFA, let X be an arbitrary set and N an arbitrary inner model of ZF. Is there Y ∈ V^{N(X)} such that V^{N(X)} = N(Y)?
- Consider N |= ZFA and some generic extension N[G]. Is V^{N[G]} a generic extension of V^N?
- On the "non-local" nature of KWP₁^{*} (and higher such principles): if every P²(κ) is the surjective image of some P(λ), does that imply KWP₁^{*}?

Geology references

- T. Usuba, "Geology of symmetric grounds."
- R. Schindler, "From set theoretic to inner model theoretic geology."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you for listening to my talk!