Skip to main content

Models and Sets Seminar

Models (respectively Sets) is a weekly seminar of model theorists (respectively set theorists) in Leeds, that aims to foster collaboration and engagement in each other's research. Roughly twice a term, the two groups will meet together for a two-hour joint seminar. Please contact Mervyn Tong at mmhwmt (at) leeds.ac.uk if you have any questions.

Time and place: MALL 1, Wednesday 13.00 - 14.00 (Sets) and 14.00 - 15.00 (Models)

Current organisers: Hope Duncan (Sets) and Mervyn Tong (Models)

Search results for “”

Results 71 to 80 of 90

Justine Falque (Université Paris-Sud)

Date
Category

Title: Classification of oligomorphic groups with polynomial profiles, conjectures of Cameron and Macpherson.
Speaker's homepageSlides

Let $G$ be a group of permutations of a denumerable set $E$. The profile of $G$ is the function $f$ which counts, for each $n$, the (possibly infinite) number $f(n)$ of orbits of $G$ acting on the $n$-subsets of $E$. When $f$ takes only finite values, $G$ is called oligomorphic.

Counting functions arising this way, and their associated generating series, form a rich yet apparently strongly constrained class. In particular, Cameron conjectured in the late seventies that, whenever the profile $f(n)$ is bounded by a polynomial (we say that $G$ is $P$-oligomorphic), it is asymptotically equivalent to a polynomial. In 1985, Macpherson further asked whether the orbit algebra of $G$ (a graded commutative algebra invented by Cameron and whose Hilbert function is $f$) was finitely generated.

After providing some context and definitions of the involved objects, this talk will outline the proof of a classification result of all (closed) $P$-oligomorphic groups, of which the conjectures of Cameron and Macpherson are corollaries.

The proof exploits classical notions from group theory (notably block systems and their lattice properties), commutative algebra, and invariant theory. This research was a joint work with Nicolas Thiéry.

Silvia Barbina (The Open University)

Date
Category

Title: Model theory of Steiner triple systems
Speaker's homepage

A Steiner triple system (STS) is a set together with a collection $B$ of subsets of size 3 such that any two elements of the set belong to exactly one subset in $B$. Finite STSs are well known combinatorial objects for which the literature is extensive. Far fewer results have been obtained on their infinite counterparts, which are natural candidates for model-theoretic investigation. I shall review some constructions of infinite STSs, including the Fraïssé limit of the class of finite STSs. I will then give an axiomatisation of the theory of the Fraïssé limit and describe some of its properties. This is joint work with Enrique Casanovas.

Sonia Navarro Flores (Universidad Nacional Autónoma de México)

Date
Category

Title: Ramsey spaces and Borel ideals

It is known that the Ellentuck space, which is forcing equivalent to the Boolean algebra $P(\omega)/\operatorname{Fin}$ forces a selective ultrafilter. The Ellentuck space is the prototypical example of a Ramsey space. The connection between Ramsey spaces, ultrafilters, and ideals has been explored in different ways. Ramsey spaces theory has shown to be crucial to investigate Tukey order, Karetov order, and combinatorial properties. This is why we investigate which ideals are related to a Ramsey space in the same sense that the ideal $\operatorname{Fin}$ is related to the Ellentuck space. In this talk, we present some results obtained.

Dana Bartošová (University of Florida)

Date
Category

Title: Universal minimal flows of group extensions
Speaker's homepage

Minimal flows of a topological group $G$ are often described as the building blocks of dynamical systems with the acting group $G$. The universal minimal flow is the most complicated one, in the sense that it is minimal and admits a homomorphism onto any minimal flow. We will study how group extensions interact with universal minimal flows, in particular extensions of and by a compact group.

Marlene Koelbing (Universität Wien)

Date
Category

Title: Distributivity spectrum of forcing notions
Speaker's homepageSlides

In my talk, I will introduce two different notions of a spectrum of distributivity of forcings. The first one is the fresh function spectrum, which is the set of regular cardinals $\lambda$, such that the forcing adds a new function with domain $\lambda$ all whose initial segments are in the ground model. I will provide several examples as well as general facts how to compute the fresh function spectrum, also discussing what sets are realizable as a fresh function spectrum of a forcing.

The second notion is the combinatorial distributivity spectrum, which is the set of possible regular heights of refining systems of maximal antichains without common refinement. We discuss the relation between the fresh function spectrum and the combinatorial distributivity spectrum. We consider the special case of $P(\omega)/\operatorname{fin}$ (for which $h$ is the minimum of the spectrum), and use a forcing construction to show that it is consistent that the combinatorial distributivity spectrum of $P(\omega)/\operatorname{fin}$ contains more than one element. This is joint work with Vera Fischer and Wolfgang Wohofsky.

Erin Carmody (Fordham College)

Date
Category

Title: The relationships between measurable and strongly compact cardinals. (Part 2)

This talk is about the ongoing investigation of the relationships between measurable and strongly compact cardinals. I will present some of the history of the theorems in this theme, including Magidor's identity crisis, and give new results. The theorems presented are in particular about the relationships between strongly compact cardinals and measurable cardinals of different Mitchell orders. One of the main theorems is that there is a universe where $\kappa_1$ and $\kappa_2$ are the first and second strongly compact cardinals, respectively, and where $\kappa_1$ is least with Mitchell order 1, and $\kappa_2$ is the least with Mitchell order 2. Another main theorem is that there is a universe where $\kappa_1$ and $\kappa_2$ are the first and second strongly compact cardinals, respectively, with $\kappa_1$ the least measurable cardinal such that $o(\kappa_1) = 2$ and $\kappa_2$ the least measurable cardinal above $\kappa_1$. This is a joint work in progress with Victoria Gitman and Arthur Apter.

Adrian Mathias (Université de la Réunion)

Date
Category

Title: Power-admissible sets and ill-founded omega-models
Speaker's homepageReferences

In the 1960s admissible sets were introduced which are transitive sets modelling principles of $\Sigma_1$ set-recursion.

In 1971 Harvey Friedman introduced power-admissible sets, which are transitive sets modelling principles of $\Sigma_1^P$,roughly$\Sigma_1$ recursion in the power-set function.

Several decades later I initiated the study of provident sets, which are transitive sets modelling principles of rudimentary recursion. Over the last fifty-odd years several workers have found that ill-founded omega-models, the axiom of constructibility and techniques from proof theory bring unexpected insights into the structure of these models of set-recursion.

In this talk I shall review these results and the methods of proof.

Lynn Scow (California State University, San Bernardino)

Date
Category

Title: Semi-retractions and preservation of the Ramsey property
Speaker's homepage

For structures $A$ and $B$ in possibly different languages we define what it means for $A$ to be a semi-retraction of $B$. An injection $f:A \rightarrow B$ is quantifier-free type respecting if tuples from $A$ that share the same quantifier-free type in $A$ are mapped by $f$ to tuples in $B$ that share the same quantifier-free type in $B$. We say that $A$is a semi-retraction of$B$ if there are quantifier-free type respecting injections $g: A \rightarrow B$ and $f: B \rightarrow A$ such that $f \circ g : A \rightarrow A$ is an embedding.

We will talk about examples of semi-retractions and give conditions for when the Ramsey property for (the age of) $B$ is inherited by a semi-retraction $A$ of $B$.

Tin Lok (Lawrence) Wong (National University of Singapore)

Date
Category

Title: Arithmetic under negated induction
Speaker's homepageSlides

Arithmetic generally does not admit any non-trivial quantifier elimination. I will talk about one exception, where the negation of an induction axiom is included in the theory. Here the Weak Koenig Lemma from reverse mathematics arises as a model completion.

This work is joint with Marta Fiori-Carones, Leszek Aleksander Kolodziejczyk and Keita Yokoyama.

Rehana Patel (African Institute for Mathematical Sciences Senegal)

Date
Category

Title: Combining logic and probability in the presence of symmetry

Among the many approaches to combining logic and probability, an important one has been to assign probabilities to formulas of a classical logic, instantiated from some fixed domain, in a manner that respects logical structure. A natural additional condition is to require that the distribution satisfy the symmetry property known as exchangeability. In this talk I will trace some of the history of this line of investigation, viewing exchangeability from a logical perspective. I will then report on the current status of a joint programme of Ackerman, Freer and myself on countable exchangeable structures, rounding out a story that has its beginnings in Leeds in 2011.